skip to main content


Search for: All records

Creators/Authors contains: "Edwards, Mary"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The collapse of the steppe-tundra biome (mammoth steppe) at the end of the Pleistocene is used as an important example of top-down ecosystem cascades, where human hunting of keystone species led to profound changes in vegetation across high latitudes in the Northern Hemisphere. Alternatively, it is argued that this biome transformation occurred through a bottom-up process, where climate-driven expansion of shrub tundra ( Betula , Salix spp.) replaced the steppe-tundra vegetation that grazing megafauna taxa relied on. In eastern Beringia, these differing hypotheses remain largely untested, in part because the precise timing and spatial pattern of Late Pleistocene shrub expansion remains poorly resolved. This uncertainty is caused by chronological ambiguity in many lake sediment records, which typically rely on radiocarbon ( 14 C) dates from bulk sediment or aquatic macrofossils—materials that are known to overestimate the age of sediment layers. Here, we reexamine Late Pleistocene pollen records for which 14 C dating of terrestrial macrofossils is available and augment these data with 14 C dates from arctic ground-squirrel middens and plant macrofossils. Comparing these paleovegetation data with a database of published 14 C dates from megafauna remains, we find the postglacial expansion of shrub tundra preceded the regional extinctions of horse ( Equus spp.) and mammoth ( Mammuthus primigenius ) and began during a period when the frequency of 14 C dates indicates large grazers were abundant. These results are not consistent with a model of top-down ecosystem cascades and support the hypothesis that climate-driven habitat loss preceded and contributed to turnover in mammal communities. 
    more » « less
  2. ABSTRACT

    A submillennial‐resolution record of lake water oxygen isotope composition (δ18O) from chironomid head capsules is presented from Burial Lake, northwest Alaska. The record spans the Last Glacial Maximum (LGM; ~20–16k cal abp) to the present and shows a series of large lake δ18O shifts (~5‰). Relatively low δ18O values occurred during a period covering the LGM, when the lake was a shallow, closed‐basin pond. Higher values characterize deglaciation (~16–11.5k cal abp) when the lake was still closed but lake levels were higher. A rapid decline between ~11 and 10.5k cal abpindicates that lake levels rose to overflowing. Lake δ18O values are interpreted to reflect the combined effects of changes in lake hydrology, growing season temperature and meteoric source water as well as large‐scale environmental changes impacting this site, including opening of the Bering Strait and shifts in atmospheric circulation patterns related to ice‐sheet dynamics. The results indicate significant shifts in precipitation minus evaporation across the late Pleistocene to early Holocene transition, which are consistent with temporal patterns of vegetation change and paludification. This study provides new perspectives on the paleohydrology of eastern Beringia concomitant with human migration and major turnover in megafaunal assemblages.

     
    more » « less